CCT8 recovers WTp53-suppressed cell cycle evolution and EMT to promote colorectal cancer progression

Author:

Liao Qing,Ren Yun,Yang Yuyi,Zhu Xiaohui,Zhi YunfeiORCID,Zhang Yujie,Chen Yi,Ding YanqingORCID,Zhao LiangORCID

Abstract

AbstractLIM and SH3 protein 1 (LASP1) is a metastasis-related protein reported to enhance tumor progression in colorectal cancer (CRC). However, the underlying mechanism is still elusive. The chaperonin protein containing TCP1 (CCT) is a cellular molecular chaperone complex, which is necessary for the correct folding of many proteins. It contains eight subunits, CCT1-8. CCT8 is overexpressed in many cancers, however, studies on CCT8 are limited and its role on CRC development and progression remains elusive. In this study, we confirmed that CCT8 and LASP1 can interact with each other and express positively in CRC cells. CCT8 could recover the ability of LASP1 to promote the invasion of CRC; CCT8 could significantly promote the proliferation, invasion, and metastasis of colorectal cells in vivo and in vitro. Mechanically, CCT8 inhibited the entry of WTp53 into the nucleus, and there was a negative correlation between the expression of CCT8 and the nuclear expression of WTp53 in clinical colorectal tissues. CCT8 promoted the cell cycle evolution and EMT progression of CRC by inhibiting the entry of WTp53 into the nucleus. Clinically, CCT8 was highly expressed in CRC. More importantly, the overall survival of CRC patients with high expression of CCT8 was worse than that of patients with low expression of CCT8. These findings indicate that as LASP1-modulated proteins, CCT8 plays a key role in promoting the progression of colorectal cancer, which provides a potential target for clinical intervention in patients with colorectal cancer.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Special Funds for Guangdong Scientific and Technological Innovation Strategy

the College Students’ Innovative Entrepreneurial Training Plan Program of Southern Medical University

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3