Differential routing and disposition of the long-chain saturated fatty acid palmitate in rodent vs human beta-cells

Author:

Thomas PatriciaORCID,Arden CatherineORCID,Corcoran Jenna,Hacker Christian,Welters Hannah J.,Morgan Noel G.ORCID

Abstract

Abstract Background Rodent and human β-cells are differentially susceptible to the “lipotoxic” effects of long-chain saturated fatty acids (LC-SFA) but the factors accounting for this are unclear. Here, we have studied the intracellular disposition of the LC-SFA palmitate in human vs rodent β–cells and present data that reveal new insights into the factors regulating β-cell lipotoxicity. Methods The subcellular distribution of the LC-SFA palmitate was studied in rodent (INS-1E and INS-1 823/13 cells) and human (EndoC-βH1) β-cells using confocal fluorescence and electron microscopy (EM). Protein expression was assessed by Western blotting and cell viability, by vital dye staining. Results Exposure of INS-1 cells to palmitate for 24 h led to loss of viability, whereas EndoC-βH1 cells remained viable even after 72 h of treatment with a high concentration (1 mM) of palmitate. Use of the fluorescent palmitate analogue BODIPY FL C16 revealed an early localisation of the LC-SFA to the Golgi apparatus in INS-1 cells and this correlated with distention of intracellular membranes, visualised under the EM. Despite this, the PERK-dependent ER stress pathway was not activated under these conditions. By contrast, BODIPY FL C16 did not accumulate in the Golgi apparatus in EndoC-βH1 cells but, rather, co-localised with the lipid droplet-associated protein, PLIN2, suggesting preferential routing into lipid droplets. When INS-1 cells were treated with a combination of palmitate plus oleate, the toxic effects of palmitate were attenuated and BODIPY FL C16 localised primarily with PLIN2 but not with a Golgi marker. Conclusion In rodent β-cells, palmitate accumulates in the Golgi apparatus at early time points whereas, in EndoC- βH1 cells, it is routed preferentially into lipid droplets. This may account for the differential sensitivity of rodent vs human β-cells to “lipotoxicity” since manoeuvres leading to the incorporation of palmitate into lipid droplets is associated with the maintenance of cell viability in both cell types.

Funder

RCUK | Medical Research Council

Diabetes UK

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3