Identification and epidemiological characterization of Type-2 diabetes sub-population using an unsupervised machine learning approach

Author:

Bej SaptarshiORCID,Sarkar JitORCID,Biswas Saikat,Mitra Pabitra,Chakrabarti ParthaORCID,Wolkenhauer OlafORCID

Abstract

Abstract Background Studies on Type-2 Diabetes Mellitus (T2DM) have revealed heterogeneous sub-populations in terms of underlying pathologies. However, the identification of sub-populations in epidemiological datasets remains unexplored. We here focus on the detection of T2DM clusters in epidemiological data, specifically analysing the National Family Health Survey-4 (NFHS-4) dataset from India containing a wide spectrum of features, including medical history, dietary and addiction habits, socio-economic and lifestyle patterns of 10,125 T2DM patients. Methods Epidemiological data provide challenges for analysis due to the diverse types of features in it. In this case, applying the state-of-the-art dimension reduction tool UMAP conventionally was found to be ineffective for the NFHS-4 dataset, which contains diverse feature types. We implemented a distributed clustering workflow combining different similarity measure settings of UMAP, for clustering continuous, ordinal and nominal features separately. We integrated the reduced dimensions from each feature-type-distributed clustering to obtain interpretable and unbiased clustering of the data. Results Our analysis reveals four significant clusters, with two of them comprising mainly of non-obese T2DM patients. These non-obese clusters have lower mean age and majorly comprises of rural residents. Surprisingly, one of the obese clusters had 90% of the T2DM patients practising a non-vegetarian diet though they did not show an increased intake of plant-based protein-rich foods. Conclusions From a methodological perspective, we show that for diverse data types, frequent in epidemiological datasets, feature-type-distributed clustering using UMAP is effective as opposed to the conventional use of the UMAP algorithm. The application of UMAP-based clustering workflow for this type of dataset is novel in itself. Our findings demonstrate the presence of heterogeneity among Indian T2DM patients with regard to socio-demography and dietary patterns. From our analysis, we conclude that the existence of significant non-obese T2DM sub-populations characterized by younger age groups and economic disadvantage raises the need for different screening criteria for T2DM among rural Indian residents.

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3