Time delays modulate the stability of complex ecosystems

Author:

Yang Yuguang,Foster Kevin R.ORCID,Coyte Katharine Z.ORCID,Li AmingORCID

Abstract

AbstractWhat drives the stability, or instability, of complex ecosystems? This question sits at the heart of community ecology and has motivated a large body of theoretical work exploring how community properties shape ecosystem dynamics. However, the overwhelming majority of current theory assumes that species interactions are instantaneous, meaning that changes in the abundance of one species will lead to immediate changes in the abundances of its partners. In practice, time delays in how species respond to one another are widespread across ecological contexts, yet the impact of these delays on ecosystems remains unclear. Here we derive a new body of theory to comprehensively study the impact of time delays on ecological stability. We find that time delays are important for ecosystem stability. Large delays are typically destabilizing but, surprisingly, short delays can substantially increase community stability. Moreover, in stark contrast to delay-free systems, delays dictate that communities with more abundant species can be less stable than ones with less abundant species. Finally, we show that delays fundamentally shift how species interactions impact ecosystem stability, with communities of mixed interaction types becoming the most stable class of ecosystem. Our work demonstrates that time delays can be critical for the stability of complex ecosystems.

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3