Constructing custom thermodynamics using deep learning

Author:

Chen XiaoliORCID,Soh Beatrice W.,Ooi Zi-En,Vissol-Gaudin Eleonore,Yu HaijunORCID,Novoselov Kostya S.ORCID,Hippalgaonkar KedarORCID,Li QianxiaoORCID

Abstract

AbstractOne of the most exciting applications of artificial intelligence is automated scientific discovery based on previously amassed data, coupled with restrictions provided by known physical principles, including symmetries and conservation laws. Such automated hypothesis creation and verification can assist scientists in studying complex phenomena, where traditional physical intuition may fail. Here we develop a platform based on a generalized Onsager principle to learn macroscopic dynamical descriptions of arbitrary stochastic dissipative systems directly from observations of their microscopic trajectories. Our method simultaneously constructs reduced thermodynamic coordinates and interprets the dynamics on these coordinates. We demonstrate its effectiveness by studying theoretically and validating experimentally the stretching of long polymer chains in an externally applied field. Specifically, we learn three interpretable thermodynamic coordinates and build a dynamical landscape of polymer stretching, including the identification of stable and transition states and the control of the stretching rate. Our general methodology can be used to address a wide range of scientific and technological applications.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3