Efficient parallelization of tensor network contraction for simulating quantum computation

Author:

Huang Cupjin,Zhang Fang,Newman Michael,Ni Xiaotong,Ding DaweiORCID,Cai Junjie,Gao Xun,Wang Tenghui,Wu Feng,Zhang Gengyan,Ku Hsiang-Sheng,Tian Zhengxiong,Wu Junyin,Xu Haihong,Yu Huanjun,Yuan Bo,Szegedy Mario,Shi YaoyunORCID,Zhao Hui-Hai,Deng Chunqing,Chen JianxinORCID

Abstract

AbstractWe develop an algorithmic framework for contracting tensor networks and demonstrate its power by classically simulating quantum computation of sizes previously deemed out of reach. Our main contribution, index slicing, is a method that efficiently parallelizes the contraction by breaking it down into much smaller and identically structured subtasks, which can then be executed in parallel without dependencies. We benchmark our algorithm on a class of random quantum circuits, achieving greater than 105 times acceleration over the original estimate of the simulation cost. We then demonstrate applications of the simulation framework for aiding the development of quantum algorithms and quantum error correction. As tensor networks are widely used in computational science, our simulation framework may find further applications.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Verifying Quantum Advantage Experiments with Multiple Amplitude Tensor Network Contraction;Physical Review Letters;2024-01-16

2. MPS-VQE: A variational quantum computational chemistry simulator with matrix product states;Computer Physics Communications;2024-01

3. Simulating Quantum Circuits Using Efficient Tensor Network Contraction Algorithms with Subexponential Upper Bound;Physical Review Letters;2023-10-30

4. Exact and approximate simulation of large quantum circuits on a single GPU;2023 IEEE International Conference on Quantum Computing and Engineering (QCE);2023-09-17

5. Towards Hamiltonian Simulation with Decision Diagrams;2023 IEEE International Conference on Quantum Computing and Engineering (QCE);2023-09-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3