Abstract
AbstractDeep learning has become a popular tool to study cis-regulatory function. Yet efforts to design software for deep-learning analyses in regulatory genomics that are findable, accessible, interoperable and reusable (FAIR) have fallen short of fully meeting these criteria. Here we present elucidating the utility of genomic elements with neural nets (EUGENe), a FAIR toolkit for the analysis of genomic sequences with deep learning. EUGENe consists of a set of modules and subpackages for executing the key functionality of a genomics deep learning workflow: (1) extracting, transforming and loading sequence data from many common file formats; (2) instantiating, initializing and training diverse model architectures; and (3) evaluating and interpreting model behavior. We designed EUGENe as a simple, flexible and extensible interface for streamlining and customizing end-to-end deep-learning sequence analyses, and illustrate these principles through application of the toolkit to three predictive modeling tasks. We hope that EUGENe represents a springboard towards a collaborative ecosystem for deep-learning applications in genomics research.
Funder
Canadian Institute for Advanced Research
U.S. Department of Health & Human Services | National Institutes of Health
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献