Abstract
AbstractStructure-based lead optimization is an open challenge in drug discovery, which is still largely driven by hypotheses and depends on the experience of medicinal chemists. Here we propose a pairwise binding comparison network (PBCNet) based on a physics-informed graph attention mechanism, specifically tailored for ranking the relative binding affinity among congeneric ligands. Benchmarking on two held-out sets (provided by Schrödinger and Merck) containing over 460 ligands and 16 targets, PBCNet demonstrated substantial advantages in terms of both prediction accuracy and computational efficiency. Equipped with a fine-tuning operation, the performance of PBCNet reaches that of Schrödinger’s FEP+, which is much more computationally intensive and requires substantial expert intervention. A further simulation-based experiment showed that active learning-optimized PBCNet may accelerate lead optimization campaigns by 473%. Finally, for the convenience of users, a web service for PBCNet is established to facilitate complex relative binding affinity prediction through an easy-to-operate graphical interface.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Computer Science (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献