Real-time detection of ammonium in soil pore water

Author:

Yupiter RotemORCID,Arnon ShlomiORCID,Yeshno Elad,Visoly-Fisher Iris,Dahan Ofer

Abstract

AbstractThe development of technologies for continuous measurement of nitrogen forms in the soil is essential for optimizing the application of fertilizers in agriculture and preventing water-resource pollution. However, there is no effective commercial technology available for continuous monitoring of ammonium species in soil pore water. This work investigates an approach for real-time measurement of ammonium in soil water using near-infrared transmission spectroscopy and partial least squares regression (PLSR) for spectral analysis. The PLSR model was trained using soil pore water collected from various soils spiked with ammonium to achieve a wide concentration range. The monitoring approach was then validated through transport experiments in a soil column. The results demonstrated capabilities for real-time tracking of the temporal variation in soil ammonium concentration and potential utilization in agronomical or environmental sensing.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3