Abstract
AbstractHomeostasis for phosphorus (HP) in submerged macrophytes may influence the susceptibility of lakes to regime shifts; however, the mechanisms linking submerged macrophyte HP to regime shifts remain unclear. We conducted an in situ mesocosm experiment to compare the dynamic responses of a high-HP species, Potamogeton maackianus, and a low-HP species, Hydrilla verticillata, to different phosphorus (P) level gradients, as well as their effects on phytoplankton inhibition. The biomass of P. maackianus under mesotrophic P (MP; P concentration 0.05 mg L−1) and eutrophic P (EP; P concentration 0.10 mg L−1) conditions was either non-significantly different from, or lower than that under oligotrophic P conditions (OP; P concentration under detection limit of 0.01 mg L−1). Conversely, H. verticillata biomass under EP was significantly higher than that under MP on day 90, whereas it died under OP. This variable response of submerged macrophyte species to P level gradients increased the relative growth advantage of H. verticillata compared to P. maackianus during eutrophication. The inhibition ratio of phytoplankton (IRP) for P. maackianus was ~15 times higher than that for H. verticillata under EP. Our study demonstrated a trend that submerged macrophyte assemblage IRP increased along with its assemblage HP. Thus, the changes in submerged macrophyte assemblages from high-HP species-dominance to low-HP species-dominance would erode its phytoplankton inhibition capacity, and further promote the regime shift from a clear-water state to a turbid state. Our results advance the regime shift theory from an ecological stoichiometry perspective and highlight the importance of high-HP submerged macrophyte species in the restoration of eutrophic lakes.
Funder
National Key Research and Development Program of Chin
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献