Abstract
AbstractEfficient desalination through a reverse osmosis (RO) membrane requires the prior removal of blockade-causing substances from raw seawater. To achieve ultrahigh-speed processing of a pretreatment process for seawater RO desalination, we combine traditional softening with ballasted flocculation (SBF) for Ca2+ and Mg2+ removal. An alkaline mixture of Ca(OH)2 and Na2CO3 was the most suitable softening agent for Ca2+ and Mg2+ removal with a reduced amount of generated sludge. This softening treatment simultaneously removed the suspended solids and bacteria from actual seawater. The settling velocity of the suspended solids generated via seawater softening was extremely low. Under the optimum conditions for desalinating actual seawater using an anionic polymer flocculant and microsand, the settling velocity exceeded 3.5 cm/s, 833 times higher than that of softening without ballasted flocculation. The amount of sludge after standing for 3 min was 76.5% lower in SBF than in conventional softening. The silt density index of the treated seawater met the water-supply standard of RO membranes (i.e., <3.0). Furthermore, the SBF-generated sludge exhibited considerably improved dewatering property than the sludge obtained via conventional softening. SBF can efficiently and quickly remove the causative substances of RO membrane fouling from seawater, thereby improving the treatability of generated sludge. SBF provides a new pretreatment process for seawater desalination using RO membranes.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献