Abstract
AbstractWaterborne illnesses are a leading health concern in refugee and internally displaced person (IDP) settlements where waterborne pathogens often spread through household recontamination of stored water. Ensuring sufficient chlorine residual is important for protecting drinking water against recontamination and ensuring water remains safe up to the point-of-consumption. We used ensembles of artificial neural networks (ANNs) to probabilistically forecast the point-of-consumption free residual chlorine (FRC) concentration and to develop point-of-distribution FRC targets based on the risk of insufficient FRC at the point-of consumption. We built ANN ensemble models using data from three refugee settlements and found that the risk-based FRC targets generated by the ensemble models were consistent with an empirical water safety evaluation, indicating that the models accurately predicted the risk of low point-of-consumption FRC despite all ensemble forecasts being underdispersed even after post-processing. This demonstrates the usefulness of ANN ensembles for generating risk-based point-of-distribution FRC targets to ensure safe drinking water in humanitarian operations.
Funder
Enhancing Learning and Research for Humanitarian Assistance
United States Agency for International Development
Médecins Sans Frontières (Doctors Without Borders) [Netherlands] United Nations High Commissioner for Refugees [Switzerland] Achmea Foundation [Netherlands]
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献