Green wall system coupled with slow sand filtration for efficient greywater management at households

Author:

Yadav Ravi K.,Sahoo Siddhant,Yadav Asheesh K.,Patil Sunil A.ORCID

Abstract

AbstractGreen walls are gaining attention for greywater management in the imminent terrestrial space and land constraint scenario. They have been tested primarily with greywater from a single source such as showers, hand or wash basins, laundry, and kitchen or a mix of a couple of these sources but barely with mixed greywater from all these household activities. Here, a green wall system coupled with a slow sand filter (SSF) was tested for managing household greywater. It consisted of a set of five serial hydraulic flow-connected reactors and an SSF unit. Each reactor housed an Epipremnum aureum sapling embedded in the support bed matrix, consisting of cocopeat and granular activated charcoal. The system operated at 150 cm d−1 hydraulic loading rate (HLR) achieved 90 ± 0.7%, 85 ± 4.5%, 72.9 ± 4.4%, and 60.6 ± 5.1% removal efficiencies for turbidity, chemical oxygen demand (COD), total nitrogen (TN), and total phosphorous (TP), respectively. The system maintained similar treatment performance with varying greywater strength when COD and TN were below ~400 and ~15 mg L−1, respectively. The polished effluent produced by SSF operated at 187 cm d−1 HLR, with characteristics <5 mg L−1 COD, <2 NTU turbidity, <1 mg L−1 TN, ~0.5 mg L−1 TP, ~7.8 pH, and <100 MPN per 100 ml fecal coliforms, qualifies the standards for non-potable reuse applications. Along with reclaimed water reuse, green walls provide environmental benefits by fixing CO2 in plant biomass. Overall, the low-cost system offers efficient greywater management in an eco-friendly way with minimized resource consumption and areal footprint.

Funder

Department of Science and Technology, Ministry of Science and Technology, Government of India

Council of Scientific and Industrial Research

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3