Combined advanced oxidation dye-wastewater treatment plant: design and development with data-driven predictive performance modeling

Author:

Chauhan Pankaj SinghORCID,Singh KirtimanORCID,Choudhary Aditya,Brighu Urmila,Singh S. K.,Bhattacharya ShantanuORCID

Abstract

AbstractThe recalcitrant nature of the industrial dyes poses a significant challenge to existing treatment technologies due to the stringent environmental regulations. This combined with the inefficiency of a single treatment method has led to the implementation of the combination of primary, secondary, and tertiary treatment processes, which fails during complex secondary aeration processes due to variable pH loads of industrial effluent wastewater. This article presents a modified design methodology of a pilot-scale micro-pre-treatment unit using a solar-triggered advanced oxidation process reactor that both effectively controls the influent variability at the source and mitigates textile effluents for making the discharge reusable for different industrial purposes. The proposed modified combination technique of controlled serial processes inclusive of primary, secondary, and tertiary treatment steps with ZnO/ZnO-GO NanoMat-based advanced oxidation process demonstrates complete remediation of industrial grade effluent with effective reuse of the discharge. Further, a reliable prediction model for estimating water quality parameter using machine learning models are proposed. Multi-linear regression and Artificial Neural network modeling provide simple, accurate, and robust prediction capabilities, which are evaluated for the efficiency of the processes. The generated prediction models capture the output parameters within an acceptable level of accuracy $$({{\boldsymbol{R}}}_{{adj}}^{{\bf{2}}}\, >\, 0.90)$$ ( R a d j 2 > 0.90 ) and allow compliance with the discharge Inland Water Discharge Standards (IWDS).

Funder

DST | Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3