Advanced hybrid nanosheet membranes with stable nanochannels for ultrafast molecular separation

Author:

Guo Qi,Xu Mao,Tang Qi,Liu Yuchen,Zhang Weiyu,Guo Chan,Zhao Xiaoli,Zhu Yujun,Ye Sheng,Liu Dan,Lei Weiwei,Chen ChengORCID

Abstract

AbstractLamellar graphene oxide (GO) membranes have gained substantial interest for molecular separation processes. However, GO membranes have shown inefficient separation performance levels due to their possession of sufficient functional groups that lead to swelling under applied hydraulic pressure. Herein, we demonstrate a highly stable and ultrafast filtrable graphene oxide-boron nitride (GOBN) hybrid membrane by incorporating boron nitride (BN) nanosheets into a GO membrane to restrict swelling and provide efficient hydraulic pressure separation characteristics. This new heterostructure retains the GOBN membrane microstructure and provides more nanochannels around the incorporation sites due to the small size of BN nanosheets; this phenomenon increases the permeance to 1310 Lm−2h−1bar−1, which is nearly six times higher than that of the pure GO membrane, with a high rejection reaching 99.2% for aqueous organic dyes. More importantly, the GOBN hybrid membrane shows an impressive permeance and dye molecule rejection performance characteristic across a range of organic solvents, such as methanol, ethanol, and isopropyl alcohol; the performance characteristics are better than those for the GO membrane. Our GOBN membrane with a stable microstructure opens opportunities for developing a high-performance multiple solvent nanofiltration membrane that surpasses the permeability-selectivity trade-off.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3