Heavy metal and organic dye removal via a hybrid porous hexagonal boron nitride-based magnetic aerogel

Author:

Krishna Kumar A. SanthanaORCID,Warchol Jolanta,Matusik JakubORCID,Tseng Wei-LungORCID,Rajesh N.,Bajda TomaszORCID

Abstract

AbstractNumerous adsorbents have been introduced to efficiently remove heavy metals and organic dyes from environmental water samples. However, magnetic a porous network aerogels are rarely developed to capture inorganic and organic pollutants from aqueous. We herein fabricated hexagonal boron nitride nanosheets (h-BNNSs)-based on magnetic hybrid aerogels (MHAs) as a lightweight adsorbent for robust uptake of Cr(VI), As(V), methylene blue (MB) and acid orange (AO). The synthetic procedure of poly(ethyleneimine)-modified h-BNNSs (PEI-h-BNNSs) involved thermal poly condensation of melamine and boric acid, pyrolysis of the resultant products which allowed exfoliated by ultra-sonication process further functionalization with PEI-mediated modification of h-BNNSs. The as formed PEI-h-BNNSs allowed in-situ formation of magnetite nanoparticles (Fe3O4 NPs) decorated on their surfaces, which are turned to be PEI-h-BNNSs@Fe3O4 NPs. The lyophilization treatment of PEI-h-BNNSs@Fe3O4 NPs-loaded PVA hydrogels generated the MHAs with large porous structures, diverse and numerous functional groups, good super-paramagnetic and a zero net surface charge. These features enabled the proposed adsorbent (MHAs) to be utilized to efficiently remove Cr(VI), As(V), MB, and AO from an aqueous solution, with maximum adsorption capacity estimated to be 833, 426, 415, 286 mg g−1, respectively. The adsorption kinetics and isotherm data demonstrated that MHAs mediated adsorption of Cr(VI), As(V), MB and AO followed the Freundlich isotherm model and a pseudo-second-order kinetics model. This finding signifies that the MHAs exhibit heterogeneous binding behavior with multilayer chemisorption of Cr(VI), As(V), MB and AO. Subsequently, the practical application were validated by conducting their detoxification of chromium and arsenic in soli-sludge samples.

Funder

Fundacja na rzecz Nauki Polskiej

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3