Lattice distortion SnS2 piezoelectric self-Fenton system for efficient degradation and detoxification of pollutants

Author:

Jiang RunrenORCID,Lu GuanghuaORCID,Wang Min,Chen Yufang,Liu Jianchao,Yan Zhenhua,Xie Haijiao

Abstract

AbstractBoth piezoelectricity and self-Fenton catalysis are effective ways to degrade water pollution, but little research has combined them to construct a more efficient water pollution treatment method. Here, a Fe-doped SnS2 (Sn1-xFexS2) piezoelectric self-Fenton system was constructed, which shows superior water treatment performance. The best piezoelectric properties of the Sn0.97Fe0.03S2 system were verified by degrading rhodamine B (RhB). The toxicity analysis of degradation intermediates and solutions confirmed that the toxicity of RhB decreased after degradation. In addition, Kelvin probe force microscopy and photoelectrochemical analysis confirmed the better piezoelectric properties of Sn0.97Fe0.03S2. It has demonstrated the enhancement of systematic piezoelectricity by Fe lattice defects and the formation of self-Fenton by Fe as an active center in the degradation of RhB. In this work, an efficient piezoelectric and self-Fenton technology is constructed to remove organic pollutants from water, which is significant for developing water treatment technology.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3