Biofouling characteristics of reverse osmosis membranes by disinfection-residual-bacteria post seven water disinfection techniques

Author:

Wang Hao-BinORCID,Wu Yin-HuORCID,Wang Wen-Long,Luo Li-Wei,Chen Gen-Qiang,Chen Zhuo,Xue Song,Xu Ao,Xu Yu-Qing,Ikuno Nozomu,Ishii Kazuki,Hu Hong-Ying

Abstract

AbstractReverse osmosis (RO) is widely used in wastewater reclamation to alleviate the increasingly global water shortage. However, it has an inconvenient defect of biofouling. Some disinfection processes have been reported to select certain undesirable disinfection-residual bacteria (DRB), leading to severe long-term biofouling potential. To provide constructive guidance on biofouling prevention in RO systems, this study performed a 32-day experiment to parallelly compared the biofouling characteristics of RO membranes of DRB after five mature water disinfection methods (NaClO, NH2Cl, ClO2, UV, and O3) and two recently developed water disinfection methods (K2FeO4 and flow-through electrode system). As a result, the DRB biofilm of K2FeO4 and O3 caused a slight normalised flux drop (22.4 ± 2.4% and 23.9 ± 1.7%) of RO membrane compared to the control group (non-disinfected, ~27% normalised flux drop). FES, UV, NaClO and ClO2 caused aggravated membrane flux drop (29.1 ± 0.3%, 33.3 ± 7.8%, 34.6 ± 6.4%, and 35.5 ± 4.0%, respectively). The biofouling behaviour showed no relationship with bacterial concentration or metabolic activity (p > 0.05). The thickness and compactness of the biofilms and the organics/bacterial number ratio in the biofilm, helped explain the difference in the fouling degree between each group. Moreover, microbial community analysis showed that the relative abundance of typical highly EPS-secretory and biofouling-related genera, such as Pseudomonas, Sphingomonas, Acinetobacter, Methylobacterium, Sphingobium, and Ralstonia, were the main reasons for the high EPS secreting ability of the total bacteria, resulting in aggravation of biofouling degree (p < 0.05). All types of disinfection except for NaClO and ClO2 effectively prevented pathogen reproduction in the DRB biofilm.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3