Decolourization of azo Lanasyn Navy M-DNL dye by Trichothecium roseum toward green mycoremediation

Author:

Ali Sally A.ORCID

Abstract

AbstractThe treatment of azo dye effluent from the dyeing process, as well as the sustainable development of the environment, can all be achieved through the use of green mycoremediation. In this in vitro study, Trichothecium roseum was isolated by the sedimentation technique from the environment of an unplasticized polyvinyl chloride pipe manufacturing plant and used to decolourize and optimise the biosorption percentage of Azo Lanasyn Navy M-DNL dye. T. roseum was also used to test the decolourization percentage of the dyes Lanasyn Navy M-DNL, Isolan Black 2S-LDN, and Isolan Yellow 2S-GLN. The outcomes showed that Lanasyn Navy M-DNL dye has the highest decolourization percentage (94%). Lanasyn Navy M-DNL dye was also found to be adsorbed onto the surface of T. roseum using scan electron microscopy and Fourier-transform infrared spectroscopy investigations. Under ideal optimisation parameters, the biosorption percentage of Lanasyn Navy M-DNL dye by beads of immobilised T. roseum cells was 96%, 97%, 96%, 97%, and 96%, respectively, for beads number 60, fresh weight 1 g, incubation temperature 25 °C, pH 6, dye concentrations 10 mg/l, and sucrose concentrations 10 g/l. Langmuir and Freundlich adsorption isotherms show good agreement between the Freundlich adsorption isotherm model and the adsorption process. Also, the elution cycle was found to be effective enough to be employed for five cycles using sixty beads of immobilised T. roseum cells. The current study suggests that T. roseum is an influencer of Lanasyn Navy M-DNL dye biosorption to create a successful green strategy for handling Lanasyn Navy M-DNL dye-contaminated effluents.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3