A facile strategy for fabrication of nanocomposite ultrafiltration membrane: oily wastewater treatment and photocatalytic self-cleaning

Author:

Baig Umair,Waheed AbdulORCID

Abstract

AbstractUnderstanding the importance of reclaiming water from a huge oily wastewater stream generated during the drilling of oil in the petroleum industry and mitigating membrane fouling, a polymeric-inorganic nanocomposite membrane was fabricated with self-cleaning properties. The photocatalytic TiO2 nanoparticles were embedded in the polyvinylidene fluoride (PVDF) matrix during wet phase inversion. To enhance the separation potential and photocatalytic activity of TiO2 nanoparticles, a conjugated polypyrrole (PPy) was grown on the membrane through oxidative polymerization leading to an active layer composed of PPy@TiO2 nano-photocatalyst. The study of membrane wettability revealed the hydrophilic and underwater superoleophobic nature of the PPy@TiO2/PVDF membrane. The PPy@TiO2/PVDF membrane was applied for treating water-containing emulsified oily feed. Different types of feeds contaminated by different oils such as motor oil, diesel oil, and crude oil were studied. The separation efficiency of the PPy@TiO2/PVDF membrane stayed above 99% as the membrane allowed only water to permeate while oil was rejected. The permeate pure water flux was found to be dependent upon feed pressure and the nature of oil in the feed. While keeping the separation efficiency constant at 99%, the flux was decreased with increasing concentration of oil in the feed which is attributed to the fouling of the membrane. The fouled membrane was photo-catalytically cleaned by exposing the fouled PPy@TiO2/PVDF membrane to solar-simulated visible light as the surface features of the cleaned membrane completely resembled that of the pristine PPy@TiO2/PVDF membrane.

Funder

King Fahd University of Petroleum and Minerals

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3