Assessment of air quality in the Philadelphia, Pennsylvania subway

Author:

Karim Anjum Shahina,Malone Maeve,Bruno Alex,Eggler Aimee L.,Posner Michael A.,Shakya Kabindra M.ORCID

Abstract

Abstract Background Subways are popular and efficient modes of transportation in cities. However, people are exposed to high levels of particulate matter (PM) in subways. Subway air quality in the United States has been investigated in a few cities, but data is lacking on simultaneous measurement of several pollutants, especially ultrafine particles (UFP) and black carbon (BC), in combination with different size fractions of PM. Objectives The goals of this study are to assess air quality in a belowground subway and compare it with outdoor ambient levels, to examine temporal variability of PM in the subway, and to analyze the correlation between PM and BC. Methods Particulate matter of varying sizes (PM1, PM2.5, PM10), UFP, and BC were measured using DustTrak, nanoparticle detector, and micro aethalometer, respectively. Measurements were made at the belowground subway platform and the aboveground street level at 15th Street subway station in Philadelphia during summer 2022. Results Belowground mean PM1, PM2.5, and PM10 were 112.2 ± 61.3 µg/m3, 120 ± 65.5 µg/m3, and 182.1 ± 132 µg/m3, respectively, which were 5.4, 5.7, and 7.6 times higher than the respective aboveground street levels. The UFP lung deposited surface area (LDSA) (59.4 ± 36.2 µm2/cm3) and BC (9.5 ± 5.4 μg/m3) belowground were 1.7 times and 10.7 times higher than the aboveground. The pollutant concentration varied from day-to-day on both the locations. A higher positive correlation was found between the belowground BC and PM2.5 (r = 0.51, p < 0.05) compared to the aboveground (r = 0.16, p < 0.05). Impact This study showed high levels of particulate matter exposure at a belowground subway station in Philadelphia. Particulate matter levels were about 5 to 8 times higher at belowground subway station than the corresponding aboveground street level. Higher levels were also observed for UFP lung deposited surface area (LDSA), while black carbon levels showed the highest concentration at the belowground level by a factor of ten compared to the aboveground level. The study shows the need for air quality management at belowground subways to reduce particulate matter exposure for the commuters.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3