Impact of limited residential address on health effect analysis of predicted air pollution in a simulation study

Author:

Jun Yoon-Bae,Song Insang,Kim Ok-Jin,Kim Sun-Young

Abstract

Abstract Background Recent epidemiological studies of air pollution have adopted spatially-resolved prediction models to estimate air pollution concentrations at people’s homes. However, the benefit of these models was limited in many studies that used existing health data relying on incomplete addresses resulting from confidentiality concerns or lack of interest when designed. Objective This simulation study aimed to understand the impact of incomplete addresses on health effect estimation based on the association between particulate matter with diameter ≤10 µm (PM10) and low birth weight (LBW). Methods We generated true annual average concentrations of PM10 at 46,007 mothers’ homes and their LBW status, using the parameters obtained from our data analysis and a previous study in Seoul, Korea. Then, we hypothesized that mothers’ address information is limited to the district and compared the properties of their health effect estimates of PM10 with those using complete addresses. We performed this comparison across eight environmental scenarios that represent various spatial distributions of PM10 and nine exposure prediction methods that provide different sets of predicted PM10 concentrations of mothers. Results We observed increased bias and root mean square error consistently across all environmental scenarios and prediction methods using incomplete addresses compared to complete addresses. However, the bias related to incomplete addresses decreased when we used population-representative exposures averaged to the district from predicted PM10 at census tract centroids. Significance Our simulation study suggested that individual exposure estimated by prediction approaches and averaged across population-representative points can provide improved accuracy in health effect estimates when complete address data are unavailable. Impact statement Our simulation study focused on a common and practical challenge of limited address information in air pollution epidemiology, and investigated its impact on health effect analysis. Cohort studies of air pollution have developed advanced exposure prediction model to allow the estimation of individual-level long-term air pollution concentrations at people’s addresses. However, it is common that address information of existing health data is available at the coarse spatial scale such as city, district, and zip code area. Our findings can help understand the possible consequences of limited address information and provide practical guidance in achieving the accuracy in health effect analysis.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,Pollution,Toxicology,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exposure to Traffic Density during Pregnancy and Birth Weight in a National Cohort, 2000–2017;International Journal of Environmental Research and Public Health;2022-07-15

2. Correction to: Impact of limited residential address on health effect analysis of predicted air pollution in a simulation study;Journal of Exposure Science & Environmental Epidemiology;2022-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3