Is home where the heat is? comparing residence-based with mobility-based measures of heat exposure in San Diego, California

Author:

Garber Michael D.ORCID,Teyton Anaïs,Jankowska Marta M.,Carrasco-Escobar Gabriel,Rojas-Rueda David,Barja-Ingaruca Antony,Benmarhnia Tarik

Abstract

Abstract Background Heat can vary spatially within an urban area. Individual-level heat exposure may thus depend on an individual’s day-to-day travel patterns (also called mobility patterns or activity space), yet heat exposure is commonly measured based on place of residence. Objective In this study, we compared measures assessing exposure to two heat indicators using place of residence with those defined considering participants’ day-to-day mobility patterns. Methods Participants (n = 599; aged 35-80 years old [mean =59 years]) from San Diego County, California wore a GPS device to measure their day-to-day travel over 14-day intervals between 2014-10-17 and 2017-10-06. We measured exposure to two heat indicators (land-surface temperature [LST] and air temperature) using an approach considering their mobility patterns and an approach considering only their place of residence. We compared participant mean and maximum exposure values from each method for each indicator. Results The overall mobility-based mean LST exposure (34.7 °C) was almost equivalent to the corresponding residence-based mean (34.8 °C; mean difference in means = −0.09 °C). Similarly, the mean difference between the overall mobility-based mean air temperature exposure (19.2 °C) and the corresponding residence-based mean (19.2 °C) was negligible (−0.02 °C). Meaningful differences emerged, however, when comparing maximums, particularly for LST. The mean mobility-based maximum LST was 40.3 °C compared with a mean residence-based maximum of 35.8 °C, a difference of 4.51 °C. The difference in maximums was considerably smaller for air temperature (mean = 0.40 °C; SD = 1.41 °C) but nevertheless greater than the corresponding difference in means. Impact As the climate warms, assessment of heat exposure both at and away from home is important for understanding its health impacts. We compared two approaches to estimate exposure to two heat measures (land surface temperature and air temperature). The first approach only considered exposure at home, and the second considered day-to-day travel. Considering the average exposure estimated by each approach, the results were almost identical. Considering the maximum exposure experienced (specific definition in text), the differences between the two approaches were more considerable, especially for land surface temperature.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3