Heat-mortality relationship in North Carolina: Comparison using different exposure methods

Author:

Choi Hayon Michelle,Bell Michelle L.

Abstract

Abstract Background Many studies have explored the heat-mortality relationship; however, comparability of results is hindered by the studies’ use of different exposure methods. Objective This study evaluated different methods for estimating exposure to temperature using individual-level data and examined the impacts on the heat-mortality relationship. Methods We calculated different temperature exposures for each individual death by using a modeled, gridded temperature dataset and a monitoring station dataset in North Carolina for 2000–2016. We considered individual-level vs. county-level averages and measured vs. modeled temperature data. A case-crossover analysis was conducted to examine the heat-mortality risk under different exposure methods. Results The minimum mortality temperature (MMT) (i.e., the temperature with the lowest mortality rate) for the monitoring station dataset was 23.87 °C and 22.67 °C (individual monitor and county average, respectively), whereas for the modeled temperature dataset the MMT was 19.46 °C and 19.61 °C (individual and county, respectively). We found higher heat-mortality risk while using temperature exposure estimated from monitoring stations compared to risk based on exposure using the modeled temperature dataset. Individual-aggregated monitoring station temperature exposure resulted in higher heat mortality risk (odds ratio (95% CI): 2.24 (95% CI: 2.21, 2.27)) for a relative temperature change comparing the 99th and 90th temperature percentiles, while modeled temperature exposure resulted in lower odds ratio of 1.27 (95% CI: 1.25, 1.29). Significance Our findings indicate that using different temperature exposure methods can result in different temperature-mortality risk. The impact of using various exposure methods should be considered in planning health policies related to high temperatures, including under climate change. Impact Statement We estimated the heat-mortality association using different methods to estimate exposure to temperature. The mean temperature value among different exposure methods were similar although lower for the modeled data, however, use of the monitoring station temperature dataset resulted in higher heat-mortality risk than the modeled temperature dataset. Differences in mortality risk from heat by urbanicity varies depending on the method used to estimate temperature exposure.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,Pollution,Toxicology,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3