Drinking water source and exposure to regulated water contaminants in the California Teachers Study cohort

Author:

Spaur MayaORCID,Medgyesi Danielle N.,Bangia Komal,Madrigal Jessica M.,Hurwitz Lauren M.,Beane Freeman Laura E.,Fisher Jared A.,Spielfogel Emma S.,Lacey James V.,Sanchez Tiffany,Jones Rena R.,Ward Mary H.

Abstract

Abstract Background Pollutants including metals/metalloids, nitrate, disinfection byproducts, and volatile organic compounds contaminate federally regulated community water systems (CWS) and unregulated domestic wells across the United States. Exposures and associated health effects, particularly at levels below regulatory limits, are understudied. Objective We described drinking water sources and exposures for the California Teachers Study (CTS), a prospective cohort of female California teachers and administrators. Methods Participants’ geocoded addresses at enrollment (1995–1996) were linked to CWS service area boundaries and monitoring data (N = 115,206, 92%); we computed average (1990–2015) concentrations of arsenic, uranium, nitrate, gross alpha (GA), five haloacetic acids (HAA5), total trihalomethanes (TTHM), trichloroethylene (TCE), and tetrachloroethylene (PCE). We used generalized linear regression to estimate geometric mean ratios of CWS exposures across demographic subgroups and neighborhood characteristics. Self-reported drinking water source and consumption at follow-up (2017–2019) were also described. Results Medians (interquartile ranges) of average concentrations of all contaminants were below regulatory limits: arsenic: 1.03 (0.54,1.71) µg/L, uranium: 3.48 (1.01,6.18) µg/L, GA: 2.21 (1.32,3.67) pCi/L, nitrate: 0.54 (0.20,1.97) mg/L, HAA5: 8.67 (2.98,14.70) µg/L, and TTHM: 12.86 (4.58,21.95) µg/L. Among those who lived within a CWS boundary and self-reported drinking water information (2017–2019), approximately 74% self-reported their water source as municipal, 15% bottled, 2% private well, 4% other, and 5% did not know/missing. Spatially linked water source was largely consistent with self-reported source at follow-up (2017–2019). Relative to non-Hispanic white participants, average arsenic, uranium, GA, and nitrate concentrations were higher for Black, Hispanic and Native American participants. Relative to participants living in census block groups in the lowest socioeconomic status (SES) quartile, participants in higher SES quartiles had lower arsenic/uranium/GA/nitrate, and higher HAA5/TTHM. Non-metropolitan participants had higher arsenic/uranium/nitrate, and metropolitan participants had higher HAA5/TTHM. Impact Though average water contaminant levels were mostly below regulatory limits in this large cohort of California women, we observed heterogeneity in exposures across sociodemographic subgroups and neighborhood characteristics. These data will be used to support future assessments of drinking water exposures and disease risk.

Publisher

Springer Science and Business Media LLC

Reference72 articles.

1. Levin R, Villanueva CM, Beene D, Cradock AL, Donat-Vargas C, Lewis J, et al. US drinking water quality: exposure risk profiles for seven legacy and emerging contaminants. J Expo Sci Environ Epidemiol. 2024;34:3–22.

2. United States Environmental Protection Agency. Information about public water systems. In: Drinking water requirements for states and public water systems. 2022. Available from: https://www.epa.gov/dwreginfo/information-about-public-water-systems

3. California Waterboards. Testing your private domestic well. 2020. Available from: https://www.waterboards.ca.gov/publications_forms/publications/factsheets/docs/dom_well_factsheet.pdf

4. United States Environmental Protection Agency. National Primary Drinking Water Regulations. 2024. Available from: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#one

5. Nolan BT, Ruddy BC. Nitrate in the ground waters of the United States—assessing the risk: National Water-Quality Assessment (NAWQA) Program. U.S. Geological Survey Fact Sheet 092-96. 1996. Available from: https://pubs.usgs.gov/fs/1996/fs-092-96/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3