Predicting traffic noise using land-use regression—a scalable approach

Author:

Staab JeroenORCID,Schady ArthurORCID,Weigand MatthiasORCID,Lakes Tobia,Taubenböck HannesORCID

Abstract

Abstract Background In modern societies, noise is ubiquitous. It is an annoyance and can have a negative impact on human health as well as on the environment. Despite increasing evidence of its negative impacts, spatial knowledge about noise distribution remains limited. Up to now, noise mapping is frequently inhibited by the necessary resources and therefore limited to selected areas. Objective Based on the assumption, that prevalent noise is determined by the arrangement of sources and the surrounding environment in which the sound propagates, we build a geostatistical model representing these parameters. Aiming for a large-scale noise mapping approach, we utilize publicly available data, context-aware feature engineering and a linear land-use regression (LUR) model. Methods Compliant to the European Noise Directive 2002/49/EG, we work at a high spatial granularity of 10 × 10-m resolution. As reference, we use the day–evening–night noise level indicator Lden. Therewith, we carry out 2000 virtual field campaigns simulating different sampling schemes and introduce spatial cross-validation concepts to test the transferability to new areas. Results The experimental results suggest the necessity for more than 500 samples stratified over the different noise levels to produce a representative model. Eventually, using 21 selected variables, our model was able to explain large proportions of the yearly averaged road noise (Lden) variability (R2 = 0.702) with a mean absolute error of 4.24 dB(A), 3.84 dB(A) for build-up areas, respectively. In applying this best performing model for an area-wide prediction, we spatially close the blank spots in existing noise maps with continuous noise levels for the entire range from 24 to 106 dB(A). Significance This data is new, particular for small communities that have not been mapped sufficiently in Europe so far. In conjunction, our findings also supplement conventionally sampled studies using physical microphones and spatially blocked cross-validations.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,Pollution,Toxicology,Epidemiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3