Proxy methods for detection of inhalation exposure in simulated office environments

Author:

Yun SeoyeonORCID,Zhong Sailin,Alavi Hamed S.,Alahi Alexandre,Licina Dusan

Abstract

Abstract Background Modern health concerns related to air pollutant exposure in buildings have been exacerbated owing to several factors. Methods for assessing inhalation exposures indoors have been restricted to stationary air pollution measurements, typically assuming steady-state conditions. Objective We aimed to examine the feasibility of several proxy methods for estimating inhalation exposure to CO2, PM2.5, and PM10 in simulated office environments. Methods In a controlled climate chamber mimicking four different office setups, human participants performed a set of scripted sitting and standing office activities. Three proxy sensing techniques were examined: stationary indoor air quality (IAQ) monitoring, individual monitoring of physiological status by wearable wristband, human presence detection by Passive Infrared (PIR) sensors. A ground-truth of occupancy was obtained from video recordings of network cameras. The results were compared with the concurrent IAQ measurements in the breathing zone of a reference participant by means of multiple linear regression (MLR) analysis with a combination of different input parameters. Results Segregating data onto sitting and standing activities could lead to improved accuracy of exposure estimation model for CO2 and PM by 9–60% during sitting activities, relative to combined activities. Stationary PM2.5 and PM10 monitors positioned at the ceiling-mounted ventilation exhaust in vicinity of the seated reference participant accurately estimated inhalation exposure (adjusted R² = 0.91 and R² = 0.87). Measurement at the front edge of the desk near abdomen showed a moderate accuracy (adjusted R² = 0.58) in estimating exposure to CO2. Combining different sensing techniques improved the CO2 exposure detection by twofold, whereas the improvement for PM exposure detection was small (~10%). Significance This study contributes to broadening the knowledge of proxy methods for personal exposure estimation under dynamic occupancy profiles. The study recommendations on optimal monitor combination and placement could help stakeholders better understand spatial air pollutant gradients indoors which can ultimately improve control of IAQ.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,Pollution,Toxicology,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3