Loss of p53 in mesenchymal stem cells promotes alteration of bone remodeling through negative regulation of osteoprotegerin

Author:

Velletri Tania,Huang YinORCID,Wang YuORCID,Li Qing,Hu Mingyuan,Xie Ningxia,Yang Qian,Chen Xiaodong,Chen Qing,Shou Peishun,Gan Yurun,Candi Eleonora,Annicchiarico-Petruzzelli Margherita,Agostini Massimiliano,Yang Huilin,Melino GerryORCID,Shi YufangORCID,Wang Ying

Abstract

Abstractp53 plays a pivotal role in controlling the differentiation of mesenchymal stem cells (MSCs) by regulating genes involved in cell cycle and early steps of differentiation process. In the context of osteogenic differentiation of MSCs and bone homeostasis, the osteoprotegerin/receptor activator of NF-κB ligand/receptor activator of NF-κB (OPG/RANKL/RANK) axis is a critical signaling pathway. The absence or loss of function of p53 has been implicated in aberrant osteogenic differentiation of MSCs that results in higher bone formation versus erosion, leading to an unbalanced bone remodeling. Here, we show by microCT that mice with p53 deletion systemically or specifically in mesenchymal cells possess significantly higher bone density than their respective littermate controls. There is a negative correlation between p53 and OPG both in vivo by analysis of serum from p53+/+, p53+/−, and p53−/− mice and in vitro by p53 knockdown and ChIP assay in MSCs. Notably, high expression of Opg or its combination with low level of p53 are prominent features in clinical cancer lesion of osteosarcoma and prostate cancer respectively, which correlate with poor survival. Intra-bone marrow injection of prostate cancer cells, together with androgen can suppress p53 expression and enhance local Opg expression, leading to an enhancement of bone density. Our results support the notion that MSCs, as osteoblast progenitor cells and one major component of bone microenvironment, represent a cellular source of OPG, whose amount is regulated by the p53 status. It also highlights a key role for the p53-OPG axis in regulating the cancer associated bone remodeling.

Funder

Ministry of Science and Technology of the People’s Republic of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3