Lysine methylation of PPP1CA by the methyltransferase SUV39H2 disrupts TFEB-dependent autophagy and promotes intervertebral disc degeneration

Author:

Liang HuaizhenORCID,Luo Rongjin,Li GaocaiORCID,Zhang Weifeng,Zhu Dingchao,Wu Di,Zhou Xingyu,Tong Bide,Wang Bingjin,Feng Xiaobo,Wang Kun,Song Yu,Yang CaoORCID

Abstract

AbstractImpaired transcription factor EB (TFEB) function and deficient autophagy activity have been shown to aggravate intervertebral disc (IVD) degeneration (IDD), yet the underlying mechanisms remain less clear. Protein posttranslational modifications (PTMs) are critical for determining TFEB trafficking and transcriptional activity. Here, we demonstrate that TFEB activity is controlled by protein methylation in degenerated nucleus pulposus cells (NPCs), even though TFEB itself is incapable of undergoing methylation. Specifically, protein phosphatase 1 catalytic subunit alpha (PPP1CA), newly identified to dephosphorylate TFEB, contains a K141 mono-methylated site. In degenerated NPCs, increased K141-methylation of PPP1CA disrupts its interaction with TEFB and subsequently blocks TEFB dephosphorylation and nuclear translocation, which eventually leads to autophagy deficiency and NPC senescence. In addition, we found that the PPP1CA-mediated targeting of TFEB is facilitated by the protein phosphatase 1 regulatory subunit 9B (PPP1R9B), which binds with PPP1CA and is also manipulated by K141 methylation. Further proteomic analysis revealed that the protein lysine methyltransferase suppressor of variegation 3–9 homologue 2 (SUV39H2) is responsible for the K141 mono-methylation of PPP1CA. Targeting SUV39H2 effectively mitigates NPC senescence and IDD progression, providing a potential therapeutic strategy for IDD intervention.

Funder

National Natural Science Foundation of China

The Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3