Targeting N-glycosylation of 4F2hc mediated by glycosyltransferase B3GNT3 sensitizes ferroptosis of pancreatic ductal adenocarcinoma

Author:

Ma HengORCID,Chen XianlongORCID,Mo ShengweiORCID,Zhang YueORCID,Mao Xinxin,Chen JingciORCID,Liu YilinORCID,Tong Wei-MinORCID,Lu ZhaohuiORCID,Yu ShuangniORCID,Chen JieORCID

Abstract

AbstractPancreatic ductal adenocarcinoma (PDAC) remains a highly fatal malignancy partially due to the acquired alterations related to aberrant protein glycosylation that pathologically remodel molecular biological processes and protect PDAC cells from death. Ferroptosis driven by lethal lipid peroxidation provides a targetable vulnerability for PDAC. However, the crosstalk between glycosylation and ferroptosis remains unclear. Here, we identified 4F2hc, a subunit of the glutamate-cystine antiporter system Xc, and its asparagine (N)-glycosylation is involved in PDAC ferroptosis by N- and O-linked glycoproteomics. Knockdown of SLC3A2 (gene name of 4F2hc) or blocking the N-glycosylation of 4F2hc potentiates ferroptosis sensitization of PDAC cells by impairing the activity of system Xc manifested by a marked decrease in intracellular glutathione. Mechanistically, we found that the glycosyltransferase B3GNT3 catalyzes the glycosylation of 4F2hc, stabilizes the 4F2hc protein, and enhances the interaction between 4F2hc and xCT. Knockout of B3GNT3 or deletion of enzymatically active B3GNT3 sensitizes PDAC cells to ferroptosis. Reconstitution of 4F2hc-deficient cells with wildtype 4F2hc restores ferroptosis resistance while glycosylation-mutated 4F2hc does not. Additionally, upon combination with a ferroptosis inducer, treatment with the classical N-glycosylation inhibitor tunicamycin (TM) markedly triggers the overactivation of lipid peroxidation and enhances the sensitivity of PDAC cells to ferroptosis. Notably, we confirmed that genetic perturbation of SLC3A2 or combination treatment with TM significantly augments ferroptosis-induced inhibition of orthotopic PDAC. Clinically, high expression of 4F2hc and B3GNT3 contributes to the progression and poor survival of PDAC patients. Collectively, our findings reveal a previously unappreciated function of N-glycosylation of 4F2hc in ferroptosis and suggest that dual targeting the vulnerabilities of N-glycosylation and ferroptosis may be an innovative therapeutic strategy for PDAC.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3