Vortex laser arrays with topological charge control and self-healing of defects

Author:

Piccardo MarcoORCID,de Oliveira MichaelORCID,Toma AndreaORCID,Aglieri VincenzoORCID,Forbes AndrewORCID,Ambrosio AntonioORCID

Abstract

AbstractGeometric arrays of vortices found in various systems owe their regular structure to mutual interactions within a confined system. In optics, such vortex crystals may form spontaneously within a resonator. Their crystallization is relevant in many areas of physics, although their usefulness is limited by the lack of control over their topology. On the other hand, programmable devices like spatial light modulators allow the design of nearly arbitrary vortex distributions but without any intrinsic evolution. By combining non-Hermitian optics with on-demand topological transformations enabled by metasurfaces, we report a solid-state laser that generates 10 × 10 vortex laser arrays with actively tunable topologies and non-local coupling dictated by the array’s topology. The vortex arrays exhibit sharp Bragg diffraction peaks, witnessing their coherence and topological charge purity, which we spatially resolve over the whole lattice by introducing a parallelized analysis technique. By structuring light at the source, we enable complex transformations that allow to arbitrarily partition orbital angular momentum within the cavity and to heal topological charge defects, thus realizing robust and versatile resonators for applications in topological optics.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3