Abstract
AbstractHolography1 has always held special appeal as it is able to record and display spatial information in three dimensions2–10. Here we show how to augment the capabilities of digital holography11,12 by using a large number of narrow laser lines at precisely defined optical frequencies simultaneously. Using an interferometer based on two frequency combs13–15 of slightly different repetition frequencies and a lensless camera sensor, we record time-varying spatial interference patterns that generate spectral hypercubes of complex holograms, revealing the amplitudes and phases of scattered wave-fields for each comb line frequency. Advancing beyond multicolour holography and low-coherence holography (including with a frequency comb16), the synergy of broad spectral bandwidth and high temporal coherence in dual-comb holography opens up novel optical diagnostics, such as precise dimensional metrology over large distances without interferometric phase ambiguity, or hyperspectral three-dimensional imaging with high spectral resolving power, as we demonstrate with molecule-selective imaging of an absorbing gas.
Funder
Max-Planck-Gesellschaft
Max-Planck Fraunhofer cooperation program
China Scholarship Council
Carl-Friedrich von Siemens Foundation, Max-Planck Fraunhofer cooperation program
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献