Abstract
AbstractRydberg atoms, with their enormous electronic orbitals, exhibit dipole–dipole interactions reaching the gigahertz range at a distance of a micrometre, making them a prominent contender for realizing ultrafast quantum operations. However, such strong interactions between two single atoms have so far never been harnessed due to the stringent requirements on the fluctuation of the atom positions and the necessary excitation strength. Here we introduce novel techniques to explore this regime. First, we trap and cool atoms to the motional quantum ground state of holographic optical tweezers, which allows control of the inter-atomic distance down to 1.5 μm with a quantum-limited precision of 30 nm. We then use ultrashort laser pulses to excite a pair of these nearby atoms to a Rydberg state simultaneously, far beyond the Rydberg blockade regime, and perform Ramsey interferometry with attosecond precision. This allows us to induce and track an ultrafast interaction-driven energy exchange completed on nanosecond timescales—two orders of magnitude faster than in any other Rydberg experiments in the tweezers platform so far. This ultrafast coherent dynamics gives rise to a conditional phase, which is the key resource for a quantum gate, opening the path for quantum simulation and computation operating at the speed limit set by dipole–dipole interactions with this ultrafast Rydberg platform.
Funder
MEXT | Japan Society for the Promotion of Science
Ministry of Education, Culture, Sports, Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献