Understanding sodium-ion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: a bridge between crystal structure and electrochemical performance

Author:

Guo Shaohua,Sun Yang,Yi Jin,Zhu Kai,Liu PanORCID,Zhu Yanbei,Zhu Guo-zhen,Chen Mingwei,Ishida Masayoshi,Zhou Haoshen

Abstract

Abstract Layered Na x MeO2 (Me=transition metal) oxides, the most common electrode materials for sodium-ion batteries, fall into different phases according to their stacking sequences. Although the crystalline phase is well known to largely influence the electrochemical performance of these materials, the structure–property relationship is still not fully experimentally and theoretically understood. Herein, a couple consisting of P2-Na0.62Ti0.37Cr0.63O2 and P3-Na0.63Ti0.37Cr0.63O2 materials having nearly the same compositions is reported. The atomic crystal structures and charge compensation mechanism are confirmed by atomic-scale characterizations in the layered P2 and P3 structures, respectively, and notably, the relationship of the crystal structure–electrochemical performance is well defined in the layered P-type structures for the first time in this paper. The electrochemical results suggest that the P2 phase exhibits a better rate capability and cycling stability than the P3 phase. Density functional theory calculations combined with a galvanostatic intermittent titration technique indicates that the P2 phase shows a lower Na diffusion barrier in the presence of multi-Na vacancies, accounting for the better rate capability of the P2 phase. Our results reveal the relationship between the crystal structure and the electrochemical properties in P-type layered sodium oxides, demonstrating the potential for future electrode advancements for applications in sodium-ion batteries.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modelling and Simulation,Condensed Matter Physics,General Materials Science,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3