Trophoblastic hormones direct early human embryogenesis

Author:

Gallego Miguel,Porayette Prashob,Kaltcheva Maria,Bowen Richard,Vadakkadath Meethal Sivan,Atwood Craig

Abstract

AbstractDivision of the human zygote leads to the formation of the blastocyst that contains human embryonic stem cells (hESC) which develop into the embryo. Little is known about the physiological signals that direct hESC division and differentiation during early embryogenesis. A number of growth factors, including the pregnancy-associated hormone human chorionic gonadotropin (hCG), are secreted by trophoblasts^1-3^ that lie adjacent to the embryoblast in the blastocyst, but it is not known whether these growth factors directly signal the epiblast. Here we show that hCG promotes the division of embryoblast-derived inner mass cells (hESC), and their differentiation during blastulation and neurulation. Inhibition of LH/hCG receptor (LHCGR) signaling with P-antisense oligonucleotides suppresses hESC proliferation. Similarly, hESC proliferation can be blocked using an antibody against the extracellular activation site of LHCGR, an effect that is reversed by treatment with hCG. hCG treatment rapidly upregulates steroidogenic acute regulatory protein-mediated cholesterol transport and the synthesis of progesterone, a neurogenic steroid^4,5^. Treatment of hESC colonies with progesterone induces neurulation as demonstrated by the expression of nestin and the formation of columnar neuroectodermal cells that organize into neural tube-like rosettes. Suppression of progesterone signaling by withdrawing progesterone or treating with the progesterone receptor antagonist RU-486 inhibits the differentiation of hESC colonies into embryoid bodies (blastulation) and rosettes (neurulation). These results explain the default pathway of hESC differentiation towards a neural stem cell fate in vitro. Collectively, our findings implicate trophoblastic hCG secretion and signaling via LHCGR on the adjacent embryoblast in the induction of hESC proliferation and differentiation into blastocysts and neurula. This paracrine/juxtacrine signaling by extraembryonic tissues is the commencement of trophic support by placental tissues in the growth and development of the human embryo.

Publisher

Springer Science and Business Media LLC

Subject

Psychiatry and Mental health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3