Author:
Hervouet Eric,Lalier Lisenn,Debien Emilie,Cheray Mathilde,Geairon Audrey,Rogniaux Helene,Vallette Francois,Cartron Pierre-Francois
Abstract
AbstractThe low level of DNA methylation in tumors compared to the level of DNA methylation in their normal-tissue counterparts or global DNA hypomethylation was one of the first epigenetic alterations to be found in human cancer^1,2^. While the contribution of genome hypomethylation in cancer development and progression is explained by several mechanisms: chromosomal instability, loss of imprinting, and reactivation of transposable elements^3, 4^, the molecular causes of genome hypomethylation remain unclear. Indeed, despite the central roles of the DNA methyltransferases (Dnmts) in the establishment and maintenance of the DNA methylation, no clear consensus appears between the reduction of the Dnmts expression and the genome hypomethylation in human cancers^5^. Nevertheless, the cancer-associated genome hypomethylation could be explained by the disruption of interactions existing between Dnmts and the DNA replication and DNA repair proteins because these interactions play a crucial role in the DNA methylation in mammalian cells^6-8^. We here demonstrate that the disruption of the Dnmt1/PCNA and Dnmt1/UHRF1 interactions induce the genome hypomethylation and act as oncogenic factors promoting the tumorigenesis. We also identify the Akt- and/or PKC-mediated phosphorylations of Dnmt1 as both initiators of these disruptions and as a hallmark conferring poor prognosis in glioma patients.
Publisher
Springer Science and Business Media LLC
Subject
Psychiatry and Mental health
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献