Memristive model of amoeba's learning

Author:

Pershin Yuriy,La Fontaine Steven,Di Ventra Massimiliano

Abstract

AbstractRecently, behavioural intelligence of the plasmodia of the true slime mold has been demonstrated. It was shown that a large amoeba-like cell Physarum polycephalum subject to a pattern of periodic environmental changes learns and changes its behaviour in anticipation of the next stimulus to come. Currently, it is not known what specific mechanisms are responsible for such behaviour. Here, we show that such behaviour can be mapped into the response of a simple electronic circuit consisting of an LC contour and a memory-resistor (a memristor) to a train of voltage pulses that mimic environment changes. We identify a possible microscopic origin of the memristive behaviour in the Physarum polycephalum, which together with the naturally occurring biological oscillators, forms the basis of the amoeba's learning. These microscopic memristive features are likely to occur in other unicellular as well as multicellular organisms, albeit in different forms. Therefore, the above memristive circuit model, which has learning properties, is useful to better understand the origins of primitive intelligence.

Publisher

Springer Science and Business Media LLC

Subject

Psychiatry and Mental health

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3