Experimental demonstration of associative memory with memristive neural networks

Author:

Pershin Yuriy,Di Ventra Massimiliano

Abstract

AbstractWhen someone mentions the name of a known person we immediately recall her face and possibly many other traits. This is because we possess the so-called associative memory - the ability to correlate different memories to the same fact or event. Associative memory is such a fundamental and encompassing human ability (and not just human) that the network of neurons in our brain must perform it quite easily. The question is then whether electronic neural networks - electronic schemes that act somewhat similarly to human brains - can be built to perform this type of function. Although the field of neural networks has developed for many years, a key element, namely the synapses between adjacent neurons, has been lacking a satisfactory electronic representation. The reason for this is that a passive circuit element able to reproduce the synapse behaviour needs to remember its past dynamical history, store a continuous set of states, and be "plastic" according to the pre-synaptic and post-synaptic neuronal activity. Here we show that all this can be accomplished by a memory-resistor (memristor for short). In particular, by using simple and inexpensive off-the-shelf components we have built a memristor emulator which realizes all required synaptic properties. Most importantly, we have demonstrated experimentally the formation of associative memory in a simple neural network consisting of three electronic neurons connected by two memristor-emulator synapses. This experimental demonstration opens up new possibilities in the understanding of neural processes using memory devices, an important step forward to reproduce complex learning, adaptive and spontaneous behaviour with electronic neural networks.

Publisher

Springer Science and Business Media LLC

Subject

Psychiatry and Mental health

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beyond Memristors: Neuromorphic Computing Using Meminductors;Micromachines;2023-02-19

2. Emergence of associative learning in a neuromorphic inference network;Journal of Neural Engineering;2022-05-30

3. Floating Memristor Emulator Using Current Biased OTAs and Single Grounded Capacitance;2021 International Conference on Microelectronics (ICM);2021-12-19

4. Memristor Emulators;Handbook of Memristor Networks;2019

5. Memristors and Memristive Devices for Neuromorphic Computing;Handbook of Memristor Networks;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3