Unsupervised learning predicts human perception and misperception of gloss

Author:

Storrs Katherine R.ORCID,Anderson Barton L.,Fleming Roland W.ORCID

Abstract

AbstractReflectance, lighting and geometry combine in complex ways to create images. How do we disentangle these to perceive individual properties, such as surface glossiness? We suggest that brains disentangle properties by learning to model statistical structure in proximal images. To test this hypothesis, we trained unsupervised generative neural networks on renderings of glossy surfaces and compared their representations with human gloss judgements. The networks spontaneously cluster images according to distal properties such as reflectance and illumination, despite receiving no explicit information about these properties. Intriguingly, the resulting representations also predict the specific patterns of ‘successes’ and ‘errors’ in human perception. Linearly decoding specular reflectance from the model’s internal code predicts human gloss perception better than ground truth, supervised networks or control models, and it predicts, on an image-by-image basis, illusions of gloss perception caused by interactions between material, shape and lighting. Unsupervised learning may underlie many perceptual dimensions in vision and beyond.

Publisher

Springer Science and Business Media LLC

Subject

Behavioral Neuroscience,Experimental and Cognitive Psychology,Social Psychology

Reference117 articles.

1. Adelson, E. H. Lightness perception and lightness illusions. in The New Cognitive Neurosciences (ed. Gazzaniga, M.S.) 339–351 (MIT Press, 2000).

2. Anderson, B. L. Mid-level vision. Curr. Biol. 30, R105–R109 (2020).

3. Anderson, B. L. The perceptual representation of transparency, lightness, and gloss. in Handbook of Perceptual Organization (ed. Wagemans, J.) 466–483 (Oxford University Press, 2015).

4. Barrow, H., Tenenbaum, J., Hanson, A. & Riseman, E. Recovering intrinsic scene characteristics. Comput. Vis. Syst. 2, 3–26 (1978).

5. Fleming, R. W. Material perception. Annu. Rev. Vis. Sci. 3, 365–388 (2017).

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-Supervised Learning of Color Constancy;2024 IEEE International Conference on Development and Learning (ICDL);2024-05-20

2. Predicting Perceived Gloss: Do Weak Labels Suffice?;Computer Graphics Forum;2024-04-27

3. High Dynamic Range Image Reconstruction from Saturated Images of Metallic Objects;Journal of Imaging;2024-04-15

4. Neural basis of perceptual surface qualities: Evidence from EEG decoding;2024-02-06

5. Unsupervised learning of mid-level visual representations;Current Opinion in Neurobiology;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3