Author:
Basarab Gregory S.,Kern Gunther H.,McNulty John,Mueller John P.,Lawrence Kenneth,Vishwanathan Karthick,Alm Richard A.,Barvian Kevin,Doig Peter,Galullo Vincent,Gardner Humphrey,Gowravaram Madhusudhan,Huband Michael,Kimzey Amy,Morningstar Marshall,Kutschke Amy,Lahiri Sushmita D.,Perros Manos,Singh Renu,Schuck Virna J. A.,Tommasi Ruben,Walkup Grant,Newman Joseph V.
Abstract
Abstract
With the diminishing effectiveness of current antibacterial therapies, it is critically important to discover agents that operate by a mechanism that circumvents existing resistance. ETX0914, the first of a new class of antibacterial agent targeted for the treatment of gonorrhea, operates by a novel mode-of-inhibition against bacterial type II topoisomerases. Incorporating an oxazolidinone on the scaffold mitigated toxicological issues often seen with topoisomerase inhibitors. Organisms resistant to other topoisomerase inhibitors were not cross-resistant with ETX0914 nor were spontaneous resistant mutants to ETX0914 cross-resistant with other topoisomerase inhibitor classes, including the widely used fluoroquinolone class. Preclinical evaluation of ETX0914 pharmacokinetics and pharmacodynamics showed distribution into vascular tissues and efficacy in a murine Staphylococcus aureus infection model that served as a surrogate for predicting efficacious exposures for the treatment of Neisseria gonorrhoeae infections. A wide safety margin to the efficacious exposure in toxicological evaluations supported progression to Phase 1. Dosing ETX0914 in human volunteers showed sufficient exposure and minimal adverse effects to expect a highly efficacious anti-gonorrhea therapy.
Publisher
Springer Science and Business Media LLC
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献