Exploring photoacoustic spectroscopy-based machine learning together with metabolomics to assess breast tumor progression in a xenograft model ex vivo

Author:

Rodrigues Jackson,Amin Ashwini,Raghushaker Chandavalli Ramappa,Chandra Subhash,Joshi Manjunath B.,Prasad Keerthana,Rai Sharada,Nayak Subramanya G.,Ray Satadru,Mahato Krishna KishoreORCID

Abstract

AbstractIn the current study, a breast tumor xenograft was established in athymic nude mice by subcutaneous injection of the MCF-7 cell line and assessed the tumor progression by photoacoustic spectroscopy combined with machine learning tools. The advancement of breast tumors in nude mice was validated by tumor volume kinetics and histopathology and corresponding image analysis by TissueQuant software compared to controls. The ex vivo tumors in progressive conditions belonging to time points, day 5th, 10th, 15th & 20th, were excited with 281 nm pulsed laser light and recorded the corresponding photoacoustic spectra in time domain. The spectra were then pre-processed, augmented for a 10-fold increase in the data strength, and subjected to wavelet packet transformation for feature extraction and selection using MATLAB software. In the present study, the top 10 features from all the time point groups under study were selected based on their prediction ranking values using the mRMR algorithm. The chosen features of all the time-point groups were then subjected to multi-class Support Vector Machine (SVM) algorithms for learning and classifying into respective time point groups under study. The analysis demonstrated accuracy values of 95.2%, 99.5%, and 80.3% with SVM- Radial Basis Function (SVM-RBF), SVM-Polynomial & SVM-Linear, respectively. The serum metabolomic levels during tumor progression complemented photoacoustic patterns of tumor progression, depicting breast cancer pathophysiology.

Funder

Indian Council of Medical Research

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3