Dysregulation at multiple points of the kynurenine pathway is a ubiquitous feature of renal cancer: implications for tumour immune evasion

Author:

Hornigold Nick,Dunn Karen R.,Craven Rachel A.,Zougman Alexandre,Trainor Sebastian,Shreeve Rebecca,Brown Joanne,Sewell Helen,Shires Michael,Knowles Margaret,Fukuwatari Tsutomu,Maher Eamonn R.,Burns Julie,Bhattarai Selina,Menon Mini,Brazma Alvis,Scelo Ghislaine,Feulner Lara,Riazalhosseini Yasser,Lathrop Mark,Harris Adrian,Selby Peter J.,Banks Rosamonde E.,Vasudev Naveen S.ORCID

Abstract

Abstract Background Indoleamine 2,3-dioxygenase (IDO), the first step in the kynurenine pathway (KP), is upregulated in some cancers and represents an attractive therapeutic target given its role in tumour immune evasion. However, the recent failure of an IDO inhibitor in a late phase trial raises questions about this strategy. Methods Matched renal cell carcinoma (RCC) and normal kidney tissues were subject to proteomic profiling. Tissue immunohistochemistry and gene expression data were used to validate findings. Phenotypic effects of loss/gain of expression were examined in vitro. Results Quinolate phosphoribosyltransferase (QPRT), the final and rate-limiting enzyme in the KP, was identified as being downregulated in RCC. Loss of QPRT expression led to increased potential for anchorage-independent growth. Gene expression, mass spectrometry (clear cell and chromophobe RCC) and tissue immunohistochemistry (clear cell, papillary and chromophobe), confirmed loss or decreased expression of QPRT and showed downregulation of other KP enzymes, including kynurenine 3-monoxygenase (KMO) and 3-hydroxyanthranilate-3,4-dioxygenase (HAAO), with a concomitant maintenance or upregulation of nicotinamide phosphoribosyltransferase (NAMPT), the key enzyme in the NAD+ salvage pathway. Conclusions Widespread dysregulation of the KP is common in RCC and is likely to contribute to tumour immune evasion, carrying implications for effective therapeutic targeting of this critical pathway

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3