Abstract
Abstract
Background
Immune checkpoint inhibitors (ICI) have revolutionized the treatment for multiple cancers. However, most of patients encounter resistance. Synthetic viability (SV) between genes could induce resistance. In this study, we established SV signature to predict the efficacy of ICI treatment for melanoma.
Methods
We collected features and predicted SV gene pairs by random forest classifier. This work prioritized SV gene pairs based on CRISPR/Cas9 screens. SV gene pairs signature were constructed to predict the response to ICI for melanoma patients.
Results
This study predicted robust SV gene pairs based on 14 features. Filtered by CRISPR/Cas9 screens, we identified 1,861 SV gene pairs, which were also related with prognosis across multiple cancer types. Next, we constructed the six SV pairs signature to predict resistance to ICI for melanoma patients. This study applied the six SV pairs signature to divide melanoma patients into high-risk and low-risk. High-risk melanoma patients were associated with worse response after ICI treatment. Immune landscape analysis revealed that high-risk melanoma patients had lower natural killer cells and CD8+ T cells infiltration.
Conclusions
In summary, the 14 features classifier accurately predicted robust SV gene pairs for cancer. The six SV pairs signature could predict resistance to ICI.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献