Specific, reversible G1 arrest by UCN-01 in vivo provides cytostatic protection of normal cells against cytotoxic chemotherapy in breast cancer

Author:

Mull Benjamin B.,Livingston J. Andrew,Patel Nalini,Bui Tuyen,Hunt Kelly K.,Keyomarsi Khandan

Abstract

Abstract Background Low-dose UCN-01 mediates G1 arrest in normal proliferating cell lines with an intact G1 to S transition but not tumour cells with a deregulated G1 to S checkpoint. Here we hypothesised that UCN-01 is effective in mediating a selective, reversible G1 arrest of normal proliferating cells, resulting in decreased chemotoxicity, improved tolerance and enhanced chemotherapeutic efficacy in vivo in both non-tumour-bearing mice and in breast cancer cell line xenograft models. Methods Murine small bowel epithelium was used to examine the kinetics and mechanism of low-dose UCN-01-mediated arrest of normal proliferating cells and if it can protect tumour-bearing mice (MDA-MB-468 xenografts) against the toxic effects of chemotherapy (5-fluorouricil (5-FU)) allowing for its full therapeutic activity. Results UCN-01 causes significant, reversible arrest of normal gut epithelial cells at 24 h; this arrest persists for up to 7 days. Normal cellular proliferation returns by 2 weeks. Pre-treatment of both non-tumour-bearing and MDA-MB-468 tumour-bearing mice with UCN-01 prior to bolus 5-FU (450 mg/kg) yielded enhanced therapeutic efficacy with significantly decreased tumour volumes and increased survival. Conclusions UCN-01 mediates a specific, reversible G1 arrest of normal cells in vivo and provides a cytoprotective strategy that decreases toxicity of cytotoxic chemotherapy without compromising efficacy.

Funder

Cancer Prevention and Research Institute of Texas

U.S. Department of Health & Human Services | NIH | National Cancer Institute

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3