Fractionated photoimmunotherapy stimulates an anti-tumour immune response: an integrated mathematical and in vitro study

Author:

Zahid Mohammad U.ORCID,Waguespack Matthew,Harman Rebecca C.,Kercher Eric M.,Nath Shubhankar,Hasan TayyabaORCID,Rizvi Imran,Spring Bryan Q.ORCID,Enderling HeikoORCID

Abstract

Abstract Background Advanced epithelial ovarian cancer (EOC) has high recurrence rates due to disseminated initial disease presentation. Cytotoxic phototherapies, such as photodynamic therapy (PDT) and photoimmunotherapy (PIT, cell-targeted PDT), have the potential to treat disseminated malignancies due to safe intraperitoneal delivery. Methods We use in vitro measurements of EOC tumour cell and T cell responses to chemotherapy, PDT, and epidermal growth factor receptor targeted PIT as inputs to a mathematical model of non-linear tumour and immune effector cell interaction. The model outputs were used to calculate how photoimmunotherapy could be utilised for tumour control. Results In vitro measurements of PIT dose responses revealed that although low light doses (<10 J/cm2) lead to limited tumour cell killing they also increased proliferation of anti-tumour immune effector cells. Model simulations demonstrated that breaking up a larger light dose into multiple lower dose fractions (vis-à-vis fractionated radiotherapy) could be utilised to effect tumour control via stimulation of an anti-tumour immune response. Conclusions There is promise for applying fractionated PIT in the setting of EOC. However, recommending specific fractionated PIT dosimetry and timing will require appropriate model calibration on tumour-immune interaction data in human patients and subsequent validation of model predictions in prospective clinical trials.

Funder

U.S. Department of Health & Human Services | NIH | National Cancer Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3