Abstract
AbstractEpigenetic mechanisms play instrumental roles in gene regulation during embryonic development and disease progression. However, it is challenging to non-invasively monitor the dynamics of epigenomes and related gene regulation at inaccessible human tissues, such as tumours, fetuses and transplanted organs. Circulating cell-free DNA (cfDNA) in peripheral blood provides a promising opportunity to non-invasively monitor the genomes from these inaccessible tissues. The fragmentation patterns of plasma cfDNA are unevenly distributed in the genome and reflect the in vivo gene-regulation status across multiple molecular layers, such as nucleosome positioning and gene expression. In this review, we revisited the computational and experimental approaches that have been recently developed to measure the cfDNA fragmentomics across different resolutions comprehensively. Moreover, cfDNA in peripheral blood is released following cell death, after apoptosis or necrosis, mainly from haematopoietic cells in healthy people and diseased tissues in patients. Several cfDNA-fragmentomics approaches showed the potential to identify the tissues-of-origin in cfDNA from cancer patients and healthy individuals. Overall, these studies paved the road for cfDNA fragmentomics to non-invasively monitor the in vivo gene-regulatory dynamics in both peripheral immune cells and diseased tissues.
Funder
Center for Clinical and Translational Science, University of Cincinnati
Bill and Melinda Gates Foundation
Cincinnati Children’s Research Foundation
Cincinnati Children’s Hospital Medical Center
Publisher
Springer Science and Business Media LLC
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献