Ascites-derived ALDH+CD44+ tumour cell subsets endow stemness, metastasis and metabolic switch via PDK4-mediated STAT3/AKT/NF-κB/IL-8 signalling in ovarian cancer

Author:

Jiang Yu-Xin,Siu Michelle Kwan-Yee,Wang Jing-Jing,Mo Xue-Tang,Leung Thomas Ho-Yin,Chan David Wai,Cheung Annie Nga-Yin,Ngan Hextan Yuen-Sheung,Chan Karen Kar-Loen

Abstract

Abstract Background Ovarian cancer is characterised by frequent recurrence due to persistent presence of residual cancer stem cells (CSCs). Here, we identify and characterise tumour subsets from ascites-derived tumour cells with stemness, metastasis and metabolic switch properties and to delineate the involvement of pyruvate dehydrogenase kinase 4 (PDK4) in such process. Methods Ovarian cancer cells/cell lines derived from ascites were used for tumourspheres/ALDH+CD44+ subset isolation. The functional roles and downstream signalling of PDK4 were explored. Its association with clinical outcome of ovarian cancer was analysed. Results We demonstrated enhanced CSC characteristics of tumour cells derived from ovarian cancer ascites, concomitant with ALDH and CD44 subset enrichment and high PDK4 expression, compared to primary tumours. We further showed tumourspheres/ALDH+CD44+ subsets from ascites-derived tumour cells/cell lines with CSC properties and enhanced glycolysis. Clinically, PDK4 expression was correlated with aggressive features. Notably, blockade of PDK4 in tumourspheres/ALDH+CD44+ subsets led to inhibition of CSC characteristics, glycolysis and activation of STAT3/AKT/NF-κB/IL-8 (signal transducer and activator of transcription 3/protein kinases B/nuclear factor-κB/interleukin-8) signalling. Conversely, overexpression of PDK4 in ALDH−CD44– subsets exerted the opposite effects. Conclusion Ascites-derived ALDH+CD44+ tumour cell subsets endow stemness, metastatic and metabolic switch properties via PDK4-mediated STAT3/AKT/NF-κB/IL-8 signalling, suggesting PDK4 as a viable therapeutic molecular target for ovarian cancer management.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3