Squeezing through the microcirculation: survival adaptations of circulating tumour cells to seed metastasis

Author:

Perea Paizal JuliaORCID,Au Sam H.,Bakal ChrisORCID

Abstract

AbstractDuring metastasis, tumour cells navigating the vascular circulatory system—circulating tumour cells (CTCs)—encounter capillary beds, where they start the process of extravasation. Biomechanical constriction forces exerted by the microcirculation compromise the survival of tumour cells within capillaries, but a proportion of CTCs manage to successfully extravasate and colonise distant sites. Despite the profound importance of this step in the progression of metastatic cancers, the factors about this deadly minority of cells remain elusive. Growing evidence suggests that mechanical forces exerted by the capillaries might induce adaptive mechanisms in CTCs, enhancing their survival and metastatic potency. Advances in microfluidics have enabled a better understanding of the cell-survival capabilities adopted in capillary-mimicking constrictions. In this review, we will highlight adaptations developed by CTCs to endure mechanical constraints in the microvasculature and outline how these mechanical forces might trigger dynamic changes towards a more invasive phenotype. A better understanding of the dynamic mechanisms adopted by CTCs within the microcirculation that ultimately lead to metastasis could open up novel therapeutic avenues.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3