EPS8 phosphorylation by Src modulates its oncogenic functions

Author:

Shahoumi Linah A.,Khodadadi Hesam,Bensreti Husam,Baban Babak,Yeudall W. AndrewORCID

Abstract

Abstract Background EPS8 is a scaffolding protein that regulates proliferation, actin dynamics and receptor trafficking. Its expression is increased in cancer, enhancing mitogenesis, migration and tumorigenesis. Src phosphorylates EPS8 at four tyrosine residues, although the function is unknown. Here we investigated the pro-oncogenic role of EPS8 tyrosine phosphorylation at Src target sites in HNSCC. Methods Plasmids expressing EPS8 Src-mediated phosphorylation site mutants (Y485F, Y525F, Y602F, Y774F and all four combined [FFFF]) were expressed in cells containing a normal endogenous level of EPS8. In addition, cells were treated with dasatinib to inhibit Src activity. EPS8 downstream targets were evaluated by western blotting. Wound closure, proliferation, immunofluorescence and tumorgenicity assays were used to investigate the impact of phenylalanine mutations on EPS8 biological functions. Results FOXM1, AURKA, and AURKB were decreased in cells expressing FFFF- and Y602F-EPS8 mutants, while cells harbouring the Y485F-, Y525F- and Y774F-EPS8 mutants showed no differences compared to controls. Consistent with this, dasatinib decreased the expression of EPS8 targets. Moreover, Y602F- and FFFF-EPS8 mutants reduced mitogenesis and motility. Strikingly though, FFFF- or Y602F-EPS8 mutants actually promoted tumorigenicity compared with control cells. Conclusions Phosphorylation of EPS8 at Y602 is crucial for signalling to the cell cycle and may provide insight to explain reduced efficacy of dasatinib treatment.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3