Abstract
Abstract
Background
Radiotherapy (RT) has recently been highlighted as a partner of immune checkpoint inhibitors. The advantages of RT include activation of lymphocytes while it potentially recruits immunosuppressive cells, such as myeloid-derived suppressor cells (MDSCs). This study aimed to investigate the mechanism of overcoming treatment resistance in immunologically cold tumours by combining RT and MDSC-targeted therapy.
Methods
The abscopal effects of irradiation were evaluated using MB49 and cisplatin-resistant MB49R mouse bladder cancer cells, with a focus on the frequency of immune cells and programmed cell death-ligand 1 (PD-L1) expression in a xenograft model.
Results
MB49R was immunologically cold compared to parental MB49 as indicated by the fewer CD8+ T cells and lower PD-L1 expression. Polymorphonuclear MDSCs increased in both MB49 and MB49R abscopal tumours, whereas the infiltration of CD8+ T cells increased only in MB49 but not in MB49R tumours. Interestingly, PD-L1 expression was not elevated in abscopal tumours. Finally, blocking MDSC in combination with RT remarkably reduced the growth of both MB49 and MB49R abscopal tumours regardless of the changes in the frequency of infiltrating CD8+ T cells.
Conclusions
The combination of RT and MDSC-targeted therapy could overcome treatment resistance in immunologically cold tumours.
Funder
MEXT | Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献